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ABSTRACT
Deforestation (the complete removal of an area’s forest cover) and forest degradation (the significant loss of forest structure, 
functions, and processes) are the result of the interaction between various direct drivers, often operating together. By 2018, 
the Amazon forest had lost approximately 870,000 km2 of its original cover, mainly due to expansion of agriculture and 
ranching. Other direct drivers of forest loss include the opening of new roads, construction of hydroelectric dams, exploitation 
of minerals and oil, and urbanization. Impacts of deforestation range from local to global, including local changes in landscape 
configuration, climate, and biodiversity, regional impacts on hydrological cycles, and global increase of greenhouse gas emissions. 
Of the remaining Amazonian forests, 17% are degraded, corresponding to 1,036,080 km2. Forest degradation has various 
anthropogenic drivers, including understory fires, edge effects, selective logging, hunting, and climate change. Degraded 
forests have significantly different structure, microclimate, and biodiversity as compared to undisturbed ones. These forests 
tend to have higher tree mortality, lower carbon stocks, more canopy gaps, higher temperatures, lower humidity, higher wind 
exposure, and exhibit compositional and functional shifts in both fauna and flora. Degraded forests can come to resemble 
their undisturbed counterparts, but this depends on the type, duration, intensity, and frequency of the disturbance event. In 
some cases this may impede the return to a historic baseline. Avoiding further loss and degradation of Amazonian forests is 
crucial to ensuring that they continue to provide valuable and life-supporting ecosystem services.
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Causadores e impactos ecológicos do desmatamento e degradação 
florestal na Amazônia
RESUMO
O desmatamento (a remoção completa da cobertura florestal) e a degradação florestal (a perda significativa de estrutura, 
funções e processos florestais) são o resultado da interação entre vários fatores causadores diretos, frequentemente operando em 
conjunto. Até 2018, a floresta amazônica perdeu aproximadamente 870.000 km2 de cobertura florestal original, principalmente 
devido à expansão da agricultura e pecuária. Outros impulsionadores diretos da perda florestal incluem abertura de novas 
estradas, construção de barragens hidrelétricas, exploração de minerais e petróleo e urbanização. Os impactos do desmatamento 
variam de local a global, incluindo mudanças locais na configuração da paisagem, clima e biodiversidade, impactos regionais 
nos ciclos hidrológicos, e aumento global das emissões de gases de efeito estufa. Das florestas amazônicas remanescentes, 
17% estão degradadas, correspondendo a 1.036.080 km2. A degradação florestal tem várias causas antropogênicas, incluindo 
incêndios no sub-bosque, efeitos de borda, extração seletiva de madeira, caça e mudanças climáticas. Florestas degradadas têm 
estrutura, microclima e biodiversidade significativamente diferentes em comparação com as não perturbadas, tendedo a maior 
mortalidade de árvores, menor estoque de carbono, mais aberturas no dossel, temperaturas mais altas, menor umidade, maior 
exposição ao vento e mudanças de composição e funcionais na fauna e na flora. Florestas degradadas podem se assemelhar a 
florestas não perturbadas, dependendo do tipo, duração, intensidade e frequência do evento de perturbação. Em alguns casos, 
isso pode impedir o retorno a uma linha de base histórica. Evitar mais perdas e degradação das florestas amazônicas é crucial 
para garantir que elas continuem a fornecer serviços ecossistêmicos valiosos e de suporte à vida.

PALAVRAS-CHAVE: desmatamento, degradação florestal, incêndios florestais, efeitos de borda, exploração madeireira
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et al. 2019; Longo et al. 2020). These impacts can interact 
with others, amplifying their individual effects. For instance, 
changes in precipitation patterns can increase plant mortality, 
leading to more greenhouse gas emissions, which in turn 
contribute to further changes in climate (Nepstad et al. 2007; 
Esquivel-Muelbert et al. 2020). 

Although both the direct drivers and the impacts of 
deforestation and forest degradation do not necessarily 
occur in isolation, we will discuss them separately, trying to 
acknowledge the role of different drivers across the Amazon, 
as well as their varied impacts. We start by presenting 
a general discussion about deforestation, followed by a 
detailed presentation of its main drivers, namely expansion of 
agriculture, ranching, infrastructure, and mining. Whenever 
possible, we also try to quantify the direct and indirect 
impacts of each individual driver. We then present a general 
framework of degradation of Amazonian forests, discussing in 
more detail its main drivers, including understory fires, edge 
effects, selective logging, and hunting. 

This review was originally developed as Chapter 19 of the 
Science Panel for the Amazon Assessment Report (https://
www.theamazonwewant.org/) (Berenguer et al. 2021).

DEFORESTATION – AN OVERVIEW 
Deforestation is defined as the complete removal of an 
area’s forest cover (Putz and Redford 2010). In the Amazon, 
867,675 km2 had been deforested by 2018 (MapBiomas 
2020), equivalent to 14% of its originally forested area (Figure 
1). Most deforestation has been concentrated in Brazil, which 
lost 741,759 km2 of forests (MapBiomas 2020; Smith et al. 
2021) – an area 15 times greater than that lost by Peru, the 

INTRODUCTION 
Across the Amazon, deforestation and forest degradation 
are the result of the interplay between various underlying 
and direct drivers acting at global, regional, and local scales 
(Rudel et al. 2009; Barona et al. 2010; Armenteras et al. 
2017a; Clerici et al. 2020). Underlying drivers are factors 
that affect human actions (IPBES 2019), such as lack of 
governance and variation in both the price of commodities 
and the price of land (Garrett et al. 2013; Nepstad et al. 2014; 
Brandão et al. 2020). Conversely, direct drivers represent the 
human actions that impact nature (IPBES 2019), including 
the expansion of pastures and croplands, opening of new 
roads, construction of hydroelectric dams, or exploitation of 
minerals and oil (Ometto et al. 2011; Fearnside 2016; Sonter 
et al. 2017). Drivers often act simultaneously. For example, 
road construction and paving leads to the creation of new 
urban centers and the advance of the agricultural frontier 
(Fernández-Llamazares et al. 2018; Nascimento et al. 2021). 
Although each of these drivers (road building, urbanization, 
and agricultural expansion) will increase deforestation rates, it 
is very difficult to estimate their isolated impacts on ecosystems 
processes and functions. 

The impacts of deforestation and forest degradation 
can be direct or indirect and have local, regional, or global 
consequences (Davidson et al. 2012; Spracklen and Garcia-
Carreras 2015; de Magalhães et al. 2019). The most obvious 
direct impact of deforestation is biodiversity loss – species-
rich forested areas are converted to species-poor agricultural 
lands. However, there are more-cryptic impacts resulting 
from deforestation and forest degradation, such as changes 
in local temperatures or regional precipitation regimes, or 
from increased global greenhouse gas emissions (Mollinari 
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country with the second largest deforested area (Figure 2a). 
In relative terms, the country that lost most of its Amazon 
forest was Brazil (19%), followed by Ecuador (13%). To date, 
French Guiana, Suriname, and Venezuela have the greatest 
proportion of the remaining original vegetation cover: 99.9%, 
97.9%, and 97.9%, respectively (Figure 2b).

Deforestation varies not only across space, but also 
across time. Between 1991 and 2006, annual deforestation 

was consistently above 20,000 km2, peaking in 2003 when 
31,828 km2 of forests were lost (MapBiomas 2020). From 
2007 to 2018, annual deforestation in the region was much 
lower, ranging between 9918 km2 and 17,695 km2 (Figure 
3). By 1990, only 5% of the forests in the basin had been lost. 
However, this figure reached 9% in 2000 and 12% in 2010 
(MapBiomas 2020; Smith et al. 2021). 

Figure 1. Current land occupied by either natural vegetation or pasture and agriculture across the Amazon biome. 
Cumulative deforestation data are shown up to 2018 (MapBiomas 2020).

Figure 2. Country-level deforestation in the Amazon biome. A – Cumulative deforestation up to 2018; B – Percentage 
of the biome deforested in each Amazonian country or territory. Data obtained from MapBiomas (2020) and analyzed 
in accord with Smith et al. (2021).
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Amazonian deforestation has been driven mainly 
by agricultural expansion (including both pastures and 
croplands), although other drivers also contribute, such 
as mining and infrastructure development, including 
urbanization and the building of roads, railways, waterways, 
and large-scale hydropower dams (Figure 4). These drivers 
often act together, creating positive feedbacks. For instance, 
after the building of large roads crossing the Brazilian Amazon, 
there was an influx of migrants to the region, creating new 
urban areas and expanding existing ones. In rural areas, 
numerous secondary roads branching off the main highways 
were constructed by agricultural settlers, leading to the well-
known pattern of ‘fish-bone’ deforestation (Figure 5). In the 
sections below, we discuss each direct driver of deforestation 
individually, highlighting, whenever possible, how its relative 
importance differs across Amazonian countries.

Deforestation can lead to a wide range of direct ecological 
impacts that are locally, regionally, and globally relevant. Of 
the local impacts, biodiversity loss is extremely concerning, 

with various species of trees, mammals, birds, reptiles, 
amphibians, and terrestrial invertebrates classified as globally 
threatened (IUCN 2021). The number of threatened 
Amazonian species is highly conservative, as the majority of 
Amazonian species have not even had their status assessed 
(Supplementary Material, Appendix S1). Although to date 
there is no record of a regional extinction, some may have 
already occurred, especially in plants and invertebrates, given 
the large number of species yet to be described in these taxa 
(ter Steege et al. 2013; Lees and Pimm 2015; Stork 2018). 
Fine-scale endemism may also contribute to undetected 
extinctions because many species have restricted geographic 
distributions (Fernandes 2013), occurring in very small areas 
(Supplementary Material, Appendix S2).

Forest fragmentation, or the subdivision of remaining 
forest cover into variable-sized forest patches, is another local 
impact of deforestation that reshapes landscape configuration. 
An increase in forest fragmentation is caused by continued 
deforestation (Broadbent et al. 2008; Armenteras et al. 

Figure 3. Annual deforestation across the Amazon biome. Deforestation data are for the period from 
1986 to 2018 (MapBiomas 2020).

Figure 4. Direct drivers of deforestation and their direct impact at local, regional, and global scales.
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2017b; Numata et al. 2017; Laurance et al. 2018). Between 
1999 and 2002, approximately 5000 new fragments were 
created annually due to deforestation in the Brazilian Amazon 
(Broadbent et al. 2008). Although most Amazonian forests 
remain in large, contiguous blocks, there are over 150,000 
fragments with areas of 1-100 ha (Haddad et al. 2015). 

The distribution of small forest fragments across the 
Amazon is not even; rather, fragmentation is concentrated 
along the southern and eastern edges, along major roads 
and rivers, and around urban centers (Vedovato et al. 2016; 
Montibeller et al. 2020). Deforestation also promotes 
fragment isolation, with forest patches becoming more distant 
from one another as well as from large contiguous forested 
areas (de Almeida et al. 2020). While fragment size affects 
the maintenance of viable populations of both animals and 
plants, fragment isolation disrupts dispersion and movement. 
The smaller the fragment, the smaller its chances of sustaining 
the original pool of forest species (Michalski and Peres 2005; 
Michalski et al. 2007; Laurance et al. 2011), with large-bodied 
animals and those that are highly dependent on forest habitat 
being particularly affected (Michalski and Peres 2007; Lees 
and Peres 2008). Fragment isolation is more harmful to 
species with low vagility, as these are unable to cross open, 
non-forest matrices (Lees and Peres 2009; Palmeirim et al. 
2020). To date, negative impacts of fragment size and/or 
isolation have been detected throughout the Amazon, affecting 
leaf bryophytes, trees, palms, birds, carnivores, and primates 
(Michalski and Peres 2007; Laurance et al. 2011). Forest 
fragments also experience a whole range of edge effects, which 
lead to their degradation.

Local temperature and precipitation are also affected by 
deforestation. Land surface temperature is 1.05-3.06°C higher 
in pastures and croplands than in nearby forests, with this 
difference becoming more pronounced during the dry season 
(Maeda et al. 2021). Furthermore, as forest cover decreases 
at landscape scales, the landscape becomes hotter; landscapes 
with a lower number of remaining forest patches can be up 
to 2.5°C hotter than those with greater forest cover (Silvério 
et al. 2015). Forest loss also leads to reduced precipitation 
(Werth 2002; Spracklen et al. 2012) because 25-50% of 
Amazonian rainfall is recycled by the forest (Eltahir and Bras 
1994). Therefore, forest loss causes a decrease in rainfall, 
increasing the risk of large-scale forest dieback. It is estimated 
that deforestation has already decreased precipitation by 1.8% 
across the Amazon (Spracklen and Garcia-Carreras 2015), 
although changes in rainfall patterns vary across the basin 
and between the wet and dry seasons (Costa and Pires 2010; 
Bagley et al. 2014). Additionally, widespread deforestation 
negatively influences precipitation outside the Amazon Basin, 
influencing regional hydrological cycles.  The percentage 
of annual precipitation in the La Plata Basin (located in 
Argentina, Bolivia, Brazil, Paraguay, and Uruguay) that 
depends on recycled moisture transported by winds from the 
Amazon has been estimated at 16% (Yang and Dominguez 
2019), 18-23% (Zemp et al., 2014), 23% (Martinez and 
Dominguez 2014) and 70% (van der Ent et al. 2010). Even 
the lowest of these estimates would be catastrophic for the 
city of São Paulo, where severe droughts in 2014 and 2021 
indicate that the city has no leeway to lose the water delivered 
to southeastern Brazil from Amazonia via the winds known 
as “flying rivers” (Fearnside 2021).

Figure 5. Deforestation driven by road building, urbanization, and agricultural expansion, resulting in a fishbone pattern of deforestation. 
Images from the BR-163 Highway and the Transamazon Highway in the Brazilian Amazon.
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Regionally, Amazonian deforestation has surprising and 
very diverse impacts, such as accelerating glacier melting 
in the Andes and contributing to Sargassum blooms in the 
Caribbean. The burning of recently felled forests as part of the 
deforestation process (Supplementary Material, Appendix S3) 
releases black carbon to the atmosphere. Smoke plumes then 
transport black carbon to the Andes, where it can be deposited 
on glaciers, speeding up glacier melt. This process is highly 
seasonal, peaking during high-fire months (de Magalhães et al. 
2019). Thousands of kilometers away, in the Caribbean Sea, 
recent Sargassum blooms are likely influenced by anomalous 
nutrient inputs into the Atlantic resulting from Amazonian 
deforestation (Wang et al. 2019). Sargassum blooms negatively 
impact tourism and fisheries and cause community shifts 
in seagrass meadows and increased coral mortality (van 
Tussenbroek et al. 2017).

At a global scale, greenhouse gas emissions are the most-
pronounced impact of forest loss in the Amazon. Between 
1980 and 2010, the Amazon lost an estimated 283.4 Tg C 
annually due to deforestation, resulting in yearly emissions of 
1040.8 Tg CO2 (Phillips et al. 2017). Deforestation-related 
emissions are not homogeneous in space or time; for example, 
Brazil’s annual emissions from Amazonian deforestation are 
eight times greater than those of Bolivia, the second largest 
emitter in the basin (Table 1). Overall, emissions have 
decreased in the region, being higher in the 1980s than in 
the 2000s (Phillips et al. 2017).

early 2000s, large-scale cropland expansion, principally soy, 
became increasingly important as a driver of deforestation. 
This pattern reversed in the late 2000s, partly due to extensive 
conservation policies, including the soy moratorium and the 
creation of protected areas (Soares-Filho et al. 2010; Macedo 
et al. 2012; Nepstad et al. 2014). Currently, soy expansion 
in the Brazilian Amazon occurs mostly on areas that were 
previously pastures instead of directly replacing forests (Song 
et al. 2021). Ranchers, for example in Mato Grosso, sell their 
pasturelands to soy planters and use the proceeds of the sales to 
buy much larger areas of cheap forest land in Pará to establish 
new ranches (Arima et al. 2011; Richards et al. 2014). This 
indirect effect means that conversion of a hectare of pasture 
to soy can have a greater impact on deforestation than directly 
clearing a hectare of forest to plant soy.

In Bolivia soy is expanding directly into forest; the region 
of Santa Cruz has been identified as the largest deforestation 
hotspot in the Amazon, mainly due to forest conversion to 
soy fields (Redo et al. 2011; Kalamandeen et al. 2018). Since 
the mid-2000s, oil palm has become a growing threat to 
Amazonian forests, especially in Colombia, Ecuador, Peru, 
and the eastern part of the Brazilian Amazon (Furumo and 
Aide 2017). Although oil palm plantations often replace 
other agricultural land uses, especially cattle ranching, it 
has also been documented directly replacing primary forests 
(Castiblanco et al. 2013; Gutiérrez-Vélez and DeFries 2013; 
de Almeida et al. 2020). For example, between 2007 and 2013, 
11% of the deforestation in the Peruvian Amazon was driven 
by oil palm plantations (Vijay et al. 2018). Planting illicit 
crops, more specifically coca, is also a driver of deforestation, 
especially in Colombia, but also in Bolivia, Ecuador, and Peru 
(Armenteras et al. 2006; Dávalos et al. 2016). However, its 
impact on forest loss is much smaller than that caused by licit 
commodities (Armenteras et al. 2013a). Since 2016, following 
the peace agreement between the Colombian government and 
the Revolutionary Armed Forces of Colombia (FARC), the 
role of coca-driven deforestation has decreased, with areas 
previously in conflict being deforested for pasture, including 
inside protected areas (Clerici et al. 2020; Prem et al. 2020). 

Direct impacts – Although croplands and pastures hold 
some animal species, the ecological communities in these 
areas are dramatically different from those of forests, both 
in terms of taxonomic and functional composition (Barlow 
et al. 2007a,b; Bregman et al. 2016), and almost all forest-
dependent species are lost. Among agricultural land uses, 
pastures hold significantly more taxonomic diversity than 
areas of mechanized agriculture (e.g., soy fields) for various 
taxa (Solar et al. 2015). Tree plantations also harbor an 
impoverished subset of forest species. For example, in an 
oil palm plantation in Peru, <5% of bird species were also 
found in forests (Srinivas and Koh 2016). In summary, the 
contribution of agricultural lands to Amazonian biodiversity 

Country Carbon loss 
(Tg C year–1)

Bolivia 28.6

Brazil 223.9

Colombia 6.5

Ecuador 2.5

French Guiana 1

Guyana 1

Peru 17.9

Suriname 1

Venezuela 1

Table 1. Estimated annual carbon loss due to deforestation in the Amazon 
between 1980-2010 (Phillips et al. 2017).

AGRICULTURAL EXPANSION
Across the Amazon, deforestation has been driven mainly 
by agricultural expansion, particularly cattle ranching 
(Nepstad et al. 2009), due to a variety of public policies. In 
the Brazilian Amazon alone, it is estimated that 80% of the 
deforested area is occupied by pastures (MMA 2018). In the 
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conservation is negligible (Moura et al. 2013), highlighting 
the irreplaceable value of forests (Barlow et al. 2007a,b).

Indirect impacts – In addition to GHG emissions during 
the deforestation process, pastures further contribute to 
emissions due to regular burning (Supplementary Material, 
Appendix S3) and bovine enteric fermentation (Bustamante 
et al. 2012). Significant changes in the physical and chemical 
properties of the soil, such as soil compaction and changes in 
nutrient concentration (de Souza Braz et al. 2013; Fujisaki 
et al. 2015; Melo et al. 2017), are also a result of forest 
conversion to pastures and croplands in the Amazon. Pesticide 
and herbicide use in agricultural systems is often excessive in 
the region (Schiesari et al. 2013; Bogaerts et al. 2017). Little 
has been done to describe or quantify the impacts of this in 
terrestrial ecosystems, but some impacts are evident. Near 
a pasture treated with herbicides near Manaus, Amazonas, 
Brazil, frogs were found to have unusually high incidence 

of malformations and some formerly common species 
disappeared from locations nearest the site of herbicide use 
(Ferrante and Fearnside 2020).

INFRASTRUCTURE
Roads 
Major official roads and highways (i.e., those built by the 
government) extend deep into the Amazon; only the western 
part of the basin is largely road free (Figure 6). Official roads, 
even if unpaved, often spawn networks of unofficial roads 
(i.e., those built by local actors), providing further access 
to previously inaccessible forests, resulting in the classic 
‘fishbone’ deforestation pattern (Figure 5). In terms of total 
length, the network of unofficial roads is so extensive that it 
greatly surpasses official ones (Nascimento et al. 2021).

Figure 6. Planned (yellow), paved (red), and unpaved (brown) roads across the Amazon, as well as existing (black) and planned (purple) 
railways. The Amazon biome is outlined in green, while the Amazon Basin is outlined in blue.
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Direct impacts – The impacts of roads on terrestrial 
wildlife in the Amazon are diverse and multi-faceted 
(Laurance et al. 2009). Their direct effects are dwarfed by 
their indirect impacts, but nonetheless remain important. 
First, roads lead to high levels of roadkill mortality. For 
example, over the course of 50 days of monitoring a 15.9-
km stretch of road in Napo (in the western Amazon), 593 
animals were killed, including reptiles, amphibians, birds, 
and mammals (Filius et al. 2020). Occasionally, roadkill 
includes threatened species, such as harpy eagles, giant 
anteaters, giant armadillos, giant otters, red-faced spider 
monkeys, lowland tapirs, and red-billed toucans (de Freitas et 
al. 2017; Medeiros 2019). Given the approximately 40,000 
km of official roads across the Amazon, roadkill is highly 
underreported and understudied. Second, roads can act as 
direct drivers of habitat fragmentation, isolating populations 
on either side (Lees and Peres 2009). Widths of just 12–25 m 
restrict the movements of bird species adapted to the forest 
understory (Laurance et al. 2004, 2009).

Indirect impacts – The greatest impacts of roads are 
indirect. The construction of official roads (and subsequently 
unofficial roads) increases land values because it makes 
agriculture and ranching more profitable, since products 
can be transported to urban centers and ports (Perz et al. 
2008). In turn, higher land prices lead to land speculation 
that motivates deforestation to secure land possession 
(Fearnside 2005). Roads also induce migration, leading to 
invasions and settlements (Mäki et al. 2001; Perz et al. 2007). 
As a result, the presence of roads is strongly associated with 
deforestation in the Amazonian portions of Brazil (Laurance 
et al. 2002; Pfaff et al. 2007), Peru (Naughton-Treves 
2004; Chávez Michaelsen et al. 2013; Bax et al. 2016), 
and Ecuador. In the case of Ecuador, road construction is 
linked to oil concessions (Sierra 2000; Mena et al. 2006). 
The paving of official roads provokes direct deforestation 
along highways (Fearnside 2007; Asner et al. 2010) and 
induces displaced deforestation by increasing land values 
for use for soy planting and thereby favoring land sales by 
ranchers to soy planters.

Roads also stimulate forest degradation, including selective 
logging (Asner et al. 2006; Amachar et al. 2009; Merry et 
al. 2009), as they provide machinery access (e.g., logging 
trucks, skidders) to areas that still contain valuable timber. 
The opposite can also be true; often loggers open small roads 
to extract target trees (Uhl and Vieira 1989; Johns et al. 
1996; Gutierrez-Velez and MacDicken 2008), which can 
then drive additional degradation. Proximity to roads is also 
highly correlated with forest fires, even in non-drought years 
(Alencar et al. 2004). This is due to the influx of migrants 
and agricultural expansion surrounding roads (Figure 5), 
thus resulting in more deforestation and pasture-related fires, 
which can escape into forested areas (Supplementary Material, 
Appendix S3). 

Hydropower dams
Substantial energy resources exist in the Amazon, some 
actively exploited and others as potential reserves (Ferreira et 
al. 2014). There are currently 307 hydropower dams either 
in operation or under construction, with proposals for at 
least 239 more (Figure 7). Of these, some are considered 
mega-dams with >1 GW capacity. Hydroelectric dams not 
only disrupt aquatic ecosystems – they also have severe 
consequences for terrestrial ones. 

Direct impacts – Most hydropower dams require an area 
to be flooded, acting as a reservoir. Both floodplain (várzea) 
and upland (terra firme) forests are killed by reservoir 
flooding (Lees et al. 2016), resulting in high levels of CO2 
and CH4 emissions due to the decomposition of submerged 
trees (Figure 8). Although seasonally flooded forests can 
survive several months under water, they die if flooded 
year-round. Forests bordering the reservoir also suffer 
stress, including reductions in the rates of photosynthesis 
of trees (dos Santos Junior et al. 2015). Depending on 
local topography, islands containing upland forests can be 
formed after flooding. Newly formed islands suffer from 
edge effects and fragmentation, as they have been cut off 
from the rest of the previously contiguous forest. Reservoir 
islands have significantly different species composition 
of both fauna and flora than adjacent mainland areas 
(Benchimol and Peres 2015; Tourinho et al. 2020), a 
pattern particularly pronounced on small islands, where 
large-bodied fauna become extinct (Benchimol and Peres 
2016). A recent study found that invertebrates are also 
negatively impacted by flooding; one study found that 
thirty years after the reservoir was filled, many islands 
completely lacked dung beetle species (Storck-Tonon et al. 
2020). Dams also affect forests downstream; altered flood 
regimes can even impact forests 125 km away from the 
reservoir (Schöngart et al. 2021), resulting in large-scale 
tree mortality (Assahira et al. 2017), leading to the loss 
of crucial habitat for a variety of organisms (e.g., arboreal 
mammals, birds, and plants), which can become locally 
extinct (Lees et al. 2016). Finally, dams can also affect the 
status of protected areas; for example, the planned São Luiz 
do Tapajós Dam resulted in part of Amazonia National 
Park being degazetted (Fearnside 2015). 

Indirect impacts – The construction of hydroelectric dams 
also leads to indirect impacts; for example, the population 
attracted to the region boosts deforestation in the area 
surrounding the dam (Jiang et al. 2018; Velastegui-Montoya 
et al. 2020). Furthermore, dam construction often results 
in socio-economic problems, such as increases in violence 
and lawlessness, and the displacement and destruction of 
the livelihoods of both Indigenous and non-Indigenous 
communities (Randell 2017; Castro-Diaz et al. 2018; 
Athayde et al. 2019; Moran 2020). 
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Urbanization 
Approximately 70% of Amazonians live in urban centers 
(Padoch et al. 2008; Parry et al. 2014), with the largest city, 
Manaus, hosting >2.2 million inhabitants (IBGE 2021). 
Urban expansion is currently concentrated in small and 
medium cities (Richards and VanWey 2015; Tritsch and Le 
Tourneau 2016) and results from various processes, from 
rural-urban and urban-urban migration to displacement due 
to armed conflict and intrinsic population growth (Rudel 
et al. 2002; Perz et al. 2010; Randell and VanWey 2014; 
Camargo et al. 2020). 

Direct impacts – Urban and suburban sprawl increase 
deforestation (Jorge et al. 2020), especially in frontier 
settlements. Amazonian urban biodiversity is poorly studied 
but is generally taxonomically depauperate and typically 
dominated by a small subset of common species found in 

secondary habitats (Lees and Moura 2017; Rico-Silva et al. 
2021). As observed elsewhere, urbanization also influences the 
local climate, which becomes hotter (de Souza et al. 2016; de 
Oliveira et al. 2020).

Indirect impacts – Many rural-urban migrants continue to 
consume forest resources, therefore playing a role in forest-use 
decisions (Padoch et al. 2008; Chaves et al. 2021). For example, 
surveys of two Amazonian cities on the Madeira River showed 
that 79% of urban households consumed bushmeat, including 
terrestrial mammals and birds (Parry et al. 2014). Animals 
hunted for urban consumption can be sourced from forests 
located up to 800 km away and frequently include threatened 
species, such as the black curassow, giant armadillo, gray 
tinamou, red-faced spider monkey, lowland tapir, red-billed 
toucan, and white-lipped peccary (Bodmer and Lozano 2001; 
Parry et al. 2010, 2014; Bizri et al. 2020; IUCN 2021).

Figure 7. Planned and active hydropower dams across the Amazon biome, as well as waterways. The Amazon biome is outlined in green, 
while the Amazonian Basin is outlined in blue. Sources: Venticinque et al. (2016), RAISG (2020).
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Railways and waterways 
Across the Amazon, the density of railways and waterways 
is much lower than that of roads (Figures 6 and 7). As a 
result, there are few studies on the impacts of these forms of 
infrastructure on terrestrial ecosystems. 

Direct impacts – Opening railways in the Amazon results 
in deforestation and fragmentation of the forest that is cut by 
the rail line, impacting the movement of animals that cannot 
cross even narrow clearings (Laurance et al. 2009). There is 
currently no published investigation into the direct impacts 
of waterways on Amazonian forests.

Indirect impacts – The limited movement of passengers 
along railways means that levels of adjacent deforestation 
are far lower relative to roads. However, railways can still 
indirectly induce deforestation. For example, between 1984 
and 2014, approximately 30,000 km2 of forests were lost in 
the area of influence of the Carajás Railway in the Brazilian 
Amazon (Santos et al. 2020). However, some of these impacts 
are hard to disentangle from that of roads built near some 
of the railway stations. In addition to carrying iron ore, the 
Carajás railway operates passenger trains from the area of 
São Luis, Maranhão to Marabá and Parauapebas, in central 
Pará; over the decades since this began in 1985 the flow of 
migrants arriving by train from Maranhão has been a major 
factor in the deforestation of central Pará (Fearnside 2001a).

Railways present important risks for the future of the 
Amazon. The “Ferro Grão” Railway, also located in the 
Brazilian Amazon, would link soy areas in Mato Grosso (in 

the southern Amazon) to the port at Miritituba on the lower 
Tapajós River, with access to the Amazon River (Figure 6). 
The lower freight costs from Mato Grosso can be expected to 
contribute to the conversion of pasture to soybeans, leading 
to displaced deforestation, as seen elsewhere when roads were 
paved (Fearnside et al. 2013). Another proposed railway would 
connect Mato Grosso to the port of Bayóvar in the Peruvian 
state of Piura (Dourojeanni 2015). This railway, known as 
the “Railway to the Pacific” in Brazil and the “Interoceanic 
Railway” in Peru, could also contribute to soy expansion 
and displaced deforestation in Brazil. The same pattern of 
displaced deforestation is expected as a result of the proposed 
Tapajós and Tocantins waterways, which would stimulate 
pasture conversion to large croplands (Fearnside 2001b).

MINING
Mining is a major source of environmental impacts in the 
Amazon, with 45,065 mining concessions either under 
operation or waiting for approval, of which 21,536 overlap 
with protected areas and Indigenous lands (Figure 9). 
While some minerals, such as bauxite, copper, and iron 
ore (Souza-Filho et al. 2021), are extracted through legal 
operations conducted by large corporations (Sonter et al. 
2017), gold mining is largely illegal (Sousa et al. 2011; Asner 
and Tupayachi 2017). Despite its illegality, gold mining has 
become far from artisanal, and is now a semi-mechanized 
activity, employing large and expensive machinery such as 
prospecting drills and hydraulic excavators (Tedesco 2013; 
Massaro and de Theije 2018; Springer et al. 2020).

Direct impacts – Overall, the extent of mining-driven 
deforestation is far smaller than that caused by agricultural 
expansion. However, it still represents the main driver 
of forest loss in French Guiana, Guyana, Suriname and 
parts of Peru (Dezécache et al. 2017; Caballero-Espejo et 
al. 2018). For example, in Guyana, mining led to the loss 
of approximately 89,000 ha of forests between 1990 and 
2019, an area 18 times larger than that lost to agricultural 
expansion in the same period (Guyana Forestry Commission 
and Indufor 2020). In Suriname, 71% of deforestation is 
attributed to mining (Suriname 2019). In the southeastern 
Peruvian Amazon, approximately 96,000 ha were deforested 
due to mining between 1985 and 2017 (Caballero-Espejo 
et al. 2018), including areas inside the Tambopata National 
Reserve and its buffer zone (Asner and Tupayachi 2017). In 
a single year, deforestation due to gold mining in the Madre 
de Dios region resulted in the direct loss of 1.12 Tg C (Csillik 
and Asner 2020).

Another direct impact of mining is the potential 
biodiversity loss in one of the Amazon’s smallest ecosystems, 
the cangas. This is a ferruginous savanna-like ecosystem 
associated with ironstone outcrops in the eastern Amazon 
(Skirycz et al. 2014). It originally occupied an area of 144 

Figure 8. Flooding of the reservoir of the Balbina hydropower dam in Brazil. 
A – Before flooding (1986); B – after flooding (2020). 
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km2, but 20% of this area has been lost to mining of iron ore 
(Souza-Filho et al. 2019). Despite the small area occupied, 
the Amazonian cangas has 38 endemic vascular plants, 24 of 
which are considered rare (Giulietti et al. 2019). The cangas 
is also rich in endemic cave-dwelling fauna (Giupponi and 
Miranda 2016; Jaffé et al. 2018). Little is known about the 
impacts of mining in this unique ecosystem.

Indirect impacts – Indirect impacts of mining activities 
are often greater than direct ones. In Brazil, for instance, 
mining was responsible for the loss of 11,670 km2 of 
Amazonian forests between 2000 and 2015, corresponding 

to 9% of all deforestation in that period (Sonter et al. 2017), 
with effects extending 70 km beyond the boundaries of 
mining concessions. Mining also stimulates forest loss by 
motivating the construction of roads and other transportation 
infrastructure that leads to high levels of human migration and 
consequent deforestation (Sonter et al. 2017; Fearnside 2019). 
The Carajás Railway, in the Brazilian Amazon, is an example 
of this. Finally, mining can lead to increased logging and 
deforestation for charcoal production, especially to be used 
in pig iron production (Fearnside 1989a; Sonter et al. 2015).

Figure 9. Illegal (purple) and legal mining that is either planned (yellow) or active (orange) across the Amazon. The Amazon biome is outlined in green, 
while the Amazon Basin is outlined in blue. Sources: Venticinque et al. (2016), RAISG (2020).
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OIL AND GAS
Oil and gas exploitation occur mainly in the western Amazon, 
where extraction of crude oil started in the 1940s, and grew 
substantially from the 1970s onwards (San Sebastián and 
Hurtig 2004; Finer et al. 2009). Currently, 192 oil and gas 
leases are under production and 33 are being prospected; 
some of these overlap with protected areas and Indigenous 
lands (Figure 10). 

Direct impacts – Major threats from hydrocarbon 
development include deforestation and oil spills, as has 
occurred on numerous occasions in Colombia, Ecuador, 
and Peru (San Sebastian and Hurtig 2004; Vargas-Cuentas 
and Gonzalez 2019; Cardona 2020; Esterhuyse et al. 2022). 

For example, in the northeastern Ecuadorian Amazon, 464 
oil spills occurred between 2001 and 2011, totaling 10,000 
metric tons of crude oil released into the environment 
(Durango-Cordero et al. 2018). This corresponds to 
approximately ¼ of the amount leaked in the Exxon Valdez 
oil spill. However, the number of oil spills across the Amazon 
is largely underestimated (Orta-Martínez et al. 2007). The 
impacts of oil spills on terrestrial ecosystems remain poorly 
understood. Nevertheless, it has been reported that lowland 
tapirs, pacas, collared peccaries, and red-brocket deer consume 
soil and water contaminated by oil spilled from oil tanks and 
abandoned wells (Orta-Martínez et al. 2018). It is unclear how 
this consumption may affect animal populations.

Figure 10. Oil and gas leases across the Amazon. The Amazon biome is outlined in green, while the Amazonian Basin is outlined in blue. Sources: 
Venticinque et al. (2016), RAISG (2020).
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Indirect impacts – As is the case of mineral exploitation, 
indirect effects of oil and gas exploitation on terrestrial 
ecosystems dwarf direct ones. The construction of a large road 
network to access oil fields has led to colonization of previously 
remote areas, especially in Ecuador, resulting in increased 
deforestation (Bilsborrow et al. 2004). Animal populations 
around these roads are negatively affected (Zapata-Ríos et 
al. 2006), with large and medium-sized mammals and game 
birds declining by 80% (Suárez et al. 2013). Some of these 
roads penetrate protected areas and Indigenous lands, where 
they have led to deforestation, habitat fragmentation, logging, 
overhunting, vehicle-wildlife collision, and soil erosion 
(Finer et al. 2009). Plans for a massive oil and gas project in 
a 740,000 km2 area in Brazil’s state of Amazonas increase the 
likelihood of building the AM-366 highway, branching of the 
controversial BR-319 (Manaus-Porto Velho) highway, thus 
opening the vast “Trans-Purus” area west of the Purus River 
to the entry of deforesters (Fearnside 2022a).

DEGRADATION – AN OVERVIEW
Forest degradation is defined as the reduction of the overall 
capacity of a forest to supply goods and services (Parrotta 
et al. 2012), representing a loss in ecological value of the 
area affected (Putz and Redford 2010). While deforestation 
is binary (i.e., either the forest is present or absent), forest 
degradation is characterized by an impact gradient, ranging 
from forests with little, although significant, loss of ecological 
value, to those suffering with severe disruption to ecosystem 
functions and processes (Berenguer et al. 2014; Longo et al. 
2020; Barreto et al. 2021). In total, approximately 1 million 
km2 of Amazonian forests were degraded by 2017 (Figure 
11), equivalent to 17% of the Amazon forest, mostly in 
Brazil (Bullock et al. 2020a,b). These degraded forests are a 
persistent part of the landscape, as only 14% of them were 
later deforested (Bullock et al. 2020b).

A variety of anthropogenic disturbances act as direct 
drivers of forest degradation in the Amazon (Figure 12), such 
as understory fires, selective logging, edge effects, hunting, 
and climate change (Barlow et al. 2016; Bustamante et al. 
2016; de Andrade et al. 2017; Phillips et al. 2017; Lapola et 
al. 2023). A forest can be degraded by the occurrence of a 
single or multiple disturbances (Nepstad et al. 1999; Michalski 
and Peres 2017). For example, a forest fragment experiencing 
edge effects may also be logged and/or burned (Figure 13). 
Between 1995 and 2017, 29% of the degraded forest across 
the biome experienced multiple disturbances (Bullock et 
al. 2020b). Furthermore, climate change is an omnipresent 
driver of degradation, affecting all Amazonian forests, whether 
already degraded or not (Flores et al. 2024)

A disturbed Amazonian forest can be characterized 
as degraded due to significant changes in its structure, 
microclimate, and biodiversity, all of which impact ecosystem 

functions and processes. For example, understory fires, 
selective logging, and edge effects can lead to elevated tree 
mortality, increased liana dominance, greater presence of 
canopy gaps, decreased forest basal area and carbon stocks, 
changes in stem density, and a decrease in the presence of 
large trees, accompanied by an increase in the occurrence of 
small-diameter individuals (Uhl and Vieira 1989; Pereira et 
al. 2002; Laurance et al. 2006, 2011; Schulze and Zweede 
2006; Barlow and Peres 2008; Balch et al. 2011; Berenguer et 
al. 2014; Brando et al. 2014; Alencar et al. 2015; da Silva et 
al. 2018). These structural changes can result in significantly 
higher light intensity, temperature, wind exposure, and vapor 
pressure deficit, as well as lower air and soil humidity (Kapos 
1989; Balch et al. 2008; Laurance et al. 2011; Mollinari et al. 
2019). These abiotic and biotic changes affect biodiversity, 
which is further impacted by hunting. Communities of both 
fauna and flora will experience compositional and functional 
shifts, with some species declining severely, leading to local 
extinctions (Zapata-Ríos et al. 2009; de Andrade et al. 2014; 
Barlow et al. 2016; Paolucci et al. 2016; Miranda et al. 2020). 
The duration of the impacts of anthropogenic disturbances 
on Amazonian forests vary depending on the nature, 
frequency, and intensity of the disturbance; while logged 
forests may return to baseline carbon stocks within a few 
decades (Rutishauser et al. 2015), burned forests may never 
recover their original stocks (da Silva et al. 2018). Recovery of 
degraded forests is also dependent on their landscape context, 
i.e., whether there are nearby forests that can act as sources of 
seeds and animals, thus speeding up recovery.

There is a large gap in our understanding of the regional 
impacts of forest degradation; a knowledge gap with an 
urgent need to be filled. Globally, the main impact of forest 
degradation is an increase in greenhouse gas emissions due 
to carbon loss (Aguiar et al. 2016). It is estimated that CO2 
emissions resulting from forest degradation already surpasses 
those from deforestation (Baccini et al. 2017; Qin et al. 2021). 

UNDERSTORY FIRES
In most years, and in most undisturbed forests, the high 
moisture load in the understory of Amazonian primary forests 
keeps flammability levels close to zero (Nepstad et al. 2004; 
Ray et al. 2005, 2010). However, thousands of hectares of 
forests burn across the basin every year (Aragão et al. 2018; 
Withey et al. 2018). These understory fires, also called forest 
fires or wildfires, spread slowly, have flame heights of 30-50 
cm, and release little energy (≤ 250 kW m-1) (Cochrane 2003; 
Brando et al. 2014). However, their impacts can be enormous 
as Amazonian forests have not co-evolved with fires.

Direct impacts – Understory fires cause important long-
term ecological impacts. They cause high levels of stem 
mortality, negatively affecting carbon stocks (Barlow et al. 
2003; Berenguer et al. 2014; Brando et al. 2019), and forests 
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Figure 12. Direct drivers of forest degradation in Amazonia.

Figure 11. Forests degraded (red) and deforested (white) between 1995-2017 across the Amazon Basin (Bullock et al. 2020b). The Amazon biome is outlined in 
green, while the Amazonian limits are outlined in blue. Areas deforested are represented in white (MapBiomas 2020). Sources: Venticinque et al. (2016), RAISG (2020).
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take many years to recover. One study estimated that burned 
forests have carbon stocks that are 25% lower than expected 
30 years after fires, with growth and mortality dynamics 
suggesting recovery had plateaued (da Silva et al. 2018). Fire 
impacts also vary regionally. Mortality rates tend to be lower 
in forests in the drier regions of the Amazon, potentially 
reflecting regional variation in bark thickness (Staver et al. 
2020). Impacts are much higher in flooded forests than in terra 
firme (Supplementary Material, Appendix S4). In the southern 
part of the basin, in the ecotone between the Amazon and the 
Cerrado, native and exotic grass species have been observed 
to invade burned forests (Silvério et al. 2013) – a pattern not 
recorded elsewhere in the region. In the southwestern part 
of the basin, burned forests have experienced an increase 
in dominance by native bamboo species (Ziccardi et al. 
2019; da Silva et al. 2021). Both grass and bamboo invasion 
significantly increase the flammability of these already burned 
forests (Silvério et al. 2013; Dalagnol et al. 2018).

High tree mortality caused by understory fires leads to 
significant taxonomic and functional changes in the plant 
community, which loses high wood-density climax species 
and sees a dominance of light-wood pioneer species (Barlow 
et al. 2012; Berenguer et al. 2018; Ziccardi et al. 2021). It 
is currently unknown whether burned forests will eventually 
return to their original plant community composition. Due 
to changes in forest structure and in the abundance of fruiting 
trees, fauna is also impacted by understory fires. For example, 
fires extirpate many forest specialist birds and mammals, while 
favoring species that occur in forest edges and secondary forests 
(Barlow and Peres 2004a,b, 2006). Additionally, understory 

fires negatively affect the abundance of several orders of 
leaf-litter invertebrates, such as Coleoptera, Collembola, 
Dermaptera, Diptera, Formicidae, Isoptera, Hemiptera, and 
Orthoptera (Silveira et al. 2010; França et al. 2020). These 
changes are long-lasting even in continuous forests where 
there should be no barriers to recolonization (Mestre et al. 
2013). All these direct impacts are much greater in forests 
that have burned multiple times, which results in structure 
that resembles that of a young secondary forest, with an open 
canopy and few large trees (Barlow and Peres 2008).

Future of fires and their impacts – Interactions between 
climate and land-use change across the Amazon can create 
the conditions needed for more widespread and intense fires 
(Malhi et al. 2008; de Faria et al. 2017; Brando et al. 2019). As 
the climate changes, we expect to observe increased frequency 
of extreme weather events and warmer climatic conditions (de 
Faria et al. 2017; Le Page et al. 2017; Fonseca et al. 2019). 
At the same time, deforestation continues to promote forest 
fragmentation and associated edge effects (Alencar et al. 2006; 
Armenteras et al. 2017a). In some parts of the Amazon we 
can already observe how interactions among these factors have 
contributed to larger and more frequent understory fires that 
burned close to 85,000 km2 of primary forests in the southern 
Amazon during the 2000s (Morton et al. 2013; Aragão et al. 
2018). Continued changes in climate and land use in the 
near future may trigger fires burning even larger areas (Pueyo 
et al. 2010; Le Page et al. 2017; Brando et al. 2020a,b). 
Consequently, fires could become the main source of carbon 
emissions in the Amazon, surpassing those associated with 
deforestation (Aragão et al. 2018; Brando et al. 2020a,b).

Figure 13. A small forest fragment, surrounded by soy fields, that has been selectively logged and then burned during the 
2015 El Niño, in Belterra, Pará, Brazil. Photo: Marizilda Cruppe/Rede Amzônia Sustentável.
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A major cause for concern is that the current transformations 
in forests caused by climate and land-use change will not only 
burn large areas but will also kill more trees than they currently 
do. In the southeastern Amazon, an increase of 100 kW/m in 
fire-line intensity results in tree mortality increasing by 10% 
(Brando et al. 2014). With more edges and drier climatic 
conditions, we expect fire-line intensity to increase greatly, 
potentially causing the mortality of many more trees. In 
addition, some projections point to a potential expansion of 
fire geography to historically wetter areas, a likely effect of 
climate and land-use change. 

EDGE EFFECTS
Between 2001 and 2015, around 180,000 km2 of forest 
edges were created in the Amazon (Silva Junior et al. 2020). 
The resulting proliferation in edge habitat, often with no 
habitat ‘core,’ is ubiquitous in farm-frontier landscapes in the 
Amazonian parts of Brazil (Fearnside 2005; Broadbent et al. 
2008; Numata et al. 2017; Silva Junior et al. 2018), Bolivia 
(Paneque-Gálvez et al. 2013), Colombia, Ecuador, and Peru 
(Armenteras et al. 2017b).

Direct impacts – At local scales, increases in light intensity, 
air temperature, vapor pressure deficit, and wind exposure, 
accompanied by decreases in air humidity and soil moisture, 
result in desiccation around edges (Kapos 1989; Broadbent et 
al. 2008; Laurance et al. 2018), which may extend hundreds 
of meters into adjacent forests (Briant et al. 2010). This 
change in microclimate contributes to elevated tree mortality, 
which in turn leads to biomass collapse, especially within the 
first 100 m of a forest edge (Laurance et al. 1997; Numata et 
al. 2011). Across the Amazon, 947 Tg C were lost between 
2001 and 2015 due to edge effects, representing a third of 
the losses from deforestation in the same period (Silva Junior 
et al. 2020). Some of the carbon in the dead biomass near 
forest edges is transferred to the soil carbon pool, which 
increases near edges (Barros and Fearnside 2016), although 
eventually this carbon can be expected to emitted to the 
atmosphere as the intact forest soil is losing carbon (Barros 
and Fearnside 2019). Carbon losses from the vegetation are 
not offset by tree growth or recruitment; forest edges suffer a 
drastic change in species composition, becoming dominated 
by lianas and trees of smaller size and with low wood density, 
which store less carbon (Laurance et al. 2006; Michalski et al. 
2007). Ultimately, the proliferation of pioneer trees causes 
the parts of the forest that are close to an edge to have higher 
tree densities than in the parts further away from an edge 
(Laurance et al. 2011).

It is not only the flora that is directly impacted by edge 
effects; both vertebrate and invertebrate fauna also experience 
considerable compositional and functional shifts, with some 
species thriving while others decline (Santos-Filho et al. 2012; 
Bitencourt et al. 2020). Overall, generalist species are favored 

by edge habitats, while specialists become restricted to the 
forest core. This may lead to local extinctions of specialist 
species unable to adapt to the new disturbed conditions, 
favoring edge and gap specialist species or even facilitating 
colonization and range expansion for non-forest species 
(Mahood et al. 2012; Rutt et al. 2019; Palmeirim et al. 2020). 
For example, ungulates avoid forest edges, while rodents 
have similar abundances in forest edges and cores (Norris et 
al. 2008). Among invertebrates, a striking example is that of 
leaf-cutting ants; within the first 50 m the density of colonies 
increases almost 20-fold when compared to the interior of the 
forest (Dohm et al. 2011).

Indirect impacts – Forest edges are more susceptible to 
other types of disturbance (Brando et al. 2019), especially 
understory fires (Armenteras et al. 2013b,c; Devisscher et al. 
2016; Silva Junior et al. 2018). This is mediated by changes in 
the structure and composition of the vegetation, in addition 
to the microclimatic alterations that occur when an edge is 
created (Cochrane 2003), which are exacerbated by climate 
change (Cochrane and Laurance 2008; Cochrane and Barber 
2009). Fragmented forest regions in the basin experience a 
higher frequency of forest fires, including Bolivia (Maillard et 
al. 2020), Brazil (da Silva et al. 2018; Silva et al. 2018; Silvério 
et al. 2019), and Colombia (Armenteras et al. 2013b, 2017b).

LOGGING 
Timber production through selective logging is one of the 
most important activities and land uses in tropical forest 
areas (Edwards et al. 2014) (Figure 14). The Pan-Amazonian 
countries represent 13% of the tropical sawnwood production, 
where Brazil alone is responsible for more than half (52%) of 
the Pan-Amazonian production followed by Ecuador (11%), 
Peru (10%), and Bolivia (10%). Venezuela, Colombia, 
Suriname, and Guyana represent the remaining 17% (Silvério 
et al. 2019; Matricardi et al. 2020), concentrated mostly along 
the deforestation frontier and surrounding major logging 
centers (Hummel et al. 2010). Selective logging is the second 
most common driver of forest degradation in the Brazilian 
Amazon, behind only edge effects (Matricardi et al. 2020). 

Direct impacts – The illegality of logging in the countries of 
the Amazon Basin is commonly associated with conventional 
logging practices, which differ from reduced-impact logging 
(RIL). Conventional logging extracts a higher amount of 
timber per hectare (e.g., volume and number of species) and 
does not follow a coherent infrastructure extraction plan that 
allows less impact for future harvest (e.g., more roads and 
logging decks) (Sist and Ferreira 2007; Lima et al. 2020). 
Conventional logging practices increase soil compaction from 
unplanned skid trails (DeArmond et al. 2019) and have a 
larger impact on reducing carbon stocks (Sasaki et al. 2016), 
increasing necromass and tree falls (Schulze and Zweede 
2006; Palace et al. 2007), and enhancing CO2 emissions 
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(up to 30%) when compared with unlogged forest (Blanc 
et al. 2009; Pearson et al. 2014). In addition, conventional 
logging practices have greater impacts on biodiversity when 
compared to RIL, including reducing species abundance, 
richness, and phylogenetic and function diversity, mainly 
during the first years after logging (Azevedo-Ramos et al. 2006; 
Montejo-Kovacevich et al. 2018; Mestre et al. 2020; Jacob et 
al. 2021). Changes in species richness and abundance may 
in part be explained by post-logging increases in individuals’ 
physiological stress (França et al. 2016). Ultimately, these 
lead to subsequent impacts on ecosystem processes; for 
example, in the Brazilian Amazon, selective logging led to 
the decline of dung beetle richness and significantly changed 
their community composition, which, in turn, decreased 
rates of soil bioturbation, a function performed by these 
animals (França et al. 2017). Distinct logging practices also 
impact ecosystem dynamics and services in logged forests in 
the Amazon. Logging affects energy and water fluxes due to 
changes in albedo and surface roughness caused by high levels 
of canopy openness, mainly in the short-term (1-3 years) 
(Huang et al. 2020). These practices also promote warmer 
temperatures inside the forest (Mollinari et al. 2019), and 
depending on the intensity of extraction, biomass recovery 
for further cutting cycles is compromised. 

Commercial production cannot be sustained after the first 
cutting cycle, even assuming reduced-impact logging practices 
and compliance with Brazil’s regulations for supposedly 

“sustainable” forest management (Sist et al. 2021). When a 
second cut occurs, it is to harvest less-valuable species that 
were not harvested in the initial cut rather than regenerating 
individuals of the most valuable species (Richardson and Peres 
2016). The slow growth rates of Amazonian hardwoods make 
a biologically sustainable management system completely 
unviable in economic terms (Sist et al. 2021), and, although 
subsidies to compensate for this are theoretically possible 
(Fearnside 1989b), the amounts that would need to be offered 
and/or the size and timing of an assumed subsequent market 
for environmental services make this option unreasonable as 
a conservation priority (Fearnside 2003, 2022b).

Indirect impacts – The road network created by selective 
logging provides access to new hunting grounds (Robinson et 
al. 1999), which can lead to declines in animal populations. 
Logging also facilitates the occurrence of understory fires; 
the intense canopy damage caused by logging activities leads 
to microclimate changes in the first two years following the 
logging operations (Mollinari et al. 2019). The hotter and drier 
forest is therefore more likely to sustain understory fires (Uhl 
and Vieira 1989). The effect of logging greatly increases the 
probability of forest catching fire and increases fire intensity 
and tree mortality in the areas that do catch fire; together 
these effects of logging on fire behavior have more than double 
the impact on biomass loss as compared to the logging itself 
(Barni et al. 2021).

Figure 14. Selective logging across Amazonia. Pie chart – distribution of timber production in Amazonian countries (ITTO 2021). Map - legal timber 
production by Brazilian municipality from 2010 to 2019 (IBGE 2020).
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HUNTING 
Overexploitation of Amazonian wildlife has a deep history, 
starting with the arrival of the first people at the Pleistocene–
Holocene transition. The first humans in the region quickly 
depleted megafaunal populations leading to the regional and 
global extinction of entire branches of the mammalian tree of 
life. These historical losses are mirrored by ongoing population 
declines in many mammal, reptile, and bird species associated 
with over-harvesting, and like the historical losses are also 
biased towards remaining large-bodied species. The results of 
this defaunation can have profound consequences for species 
composition, population biomass, ecosystem processes, and 
human well-being in over-hunted Amazonian landscapes. 

Commercial exploitation of animal hides in the 20th 
century was intense; between 1904 and 1969, it is estimated 
that 23.3 million wild mammals and reptiles of at least 20 
species were commercially hunted for their hides (Antunes 
et al. 2016). This commercial exploitation is now much 
reduced, although approximately 41,000 peccary skins 
(mostly collared peccary, Pecari tajacu) are exported for the 
fashion industry annually (Sinovas et al. 2017). Exploitation 
is now predominantly for food, with Peres et al. (2016) 
estimating that hunting affects 32% of remaining forests in 
the Brazilian Amazon (~1M km2), with a strong depletion 
of large vertebrate populations in the vicinity of settlements, 
roads, and rivers (Peres and Lake 2003).

Direct impacts – Impacts vary across species depending 
on their life-history characteristics; taxa that are typically 
long-lived, with low rates of increase, and long generation 
times, are more vulnerable to local extinction (Bodmer et al. 
1997). For example, in southeastern Peru hunting resulted 
in the local extirpation of large primate species and reduced 
populations of medium-sized primates by 80% (Nuñez-
Iturri and Howe 2007). Vulnerability to hunting may 
also be exacerbated by biogeographic quirks, with hunting 
representing a major threat to micro-endemic species like 
the black-winged trumpeter (Psophia obscura) or terrestrial 
species restricted to specific habitats which are more accessible 
like the wattled curassow (Crax globulosa), which is found 
only along more accessible river-edge forests. Habitat loss, 
fragmentation, and degradation interact synergistically with 
hunting in reducing and isolating populations that do not use 
the non-forest habitat matrix, inhibiting ‘rescue effects’ from 
neighboring forests and hence source-sink dynamics (Peres 
2001). Additionally, there is evidence of sublethal impacts 
from hunting on Amazonian vertebrates, with lead being 
found in the livers of Amazonian game species (Cartró-Sabaté 
et al. 2019).

Although hunting represents the major driver of direct 
defaunation, other drivers of loss include human-wildlife 
conflicts arising from livestock depredations by jaguar 
(Panthera onca) (Michalski et al. 2006) and harpy eagles 

(Harpia harpyja) (Trinca et al. 2008). The wildlife trade also 
impacts a diverse set of taxa; for example, live parrot exports 
average 12,000 birds annually, mostly wild-caught individuals 
from Guyana, Peru, and Suriname (Sinovas et al. 2017), and 
~4000 night monkeys (Aotus sp.) were estimated to have been 
sold to a biomedical laboratory on the Colombian side of the 
tri-border region of the north-western Amazon (Maldonado 
et al. 2009). Direct depletion for the pet trade has a long 
history and likely drove regional extinction of species such as 
the golden parakeet (Guaruba guarouba) from as long ago as 
the mid-19th century (Moura et al. 2014). Although trade has 
been reduced by effective command-and-control strategies, 
it remains the main threat to regionally critically endangered 
species like the great-billed seed finch (Sporophila maximiliani) 
(Ubaid et al. 2018).

Indirect impacts – Over-hunting may have pervasive 
impacts on Amazonian forests by disrupting or entirely 
removing ‘top-down’ control on ecosystems that are 
mediated by large-bodied predators and herbivores, leading 
to widespread and potentially irreversible ecosystem alteration 
and to loss of resilience and function (Ripple et al. 2016). 
Historical megafaunal extinctions have triggered declines 
in large-seeded tree species dispersed by the large-bodied 
frugivores (Doughty et al. 2016), and this trend continues with 
overhunting disrupting the ecological interactions between 
plants and their seed dispersers, with some large mammals 
performing non-redundant seed dispersal services (Ripple et al. 
2016). Consequently, there is a shift in recruiting patterns of 
saplings in heavily hunted areas (Bagchi et al. 2018), with an 
increase in wind-dispersed and small-seeded species (Terborgh 
et al. 2008). This, in turn, could lead to a decrease in forests’ 
future carbon stocks, as the species favored in hunted forests 
tend to have lower carbon storage capacity (Peres et al. 2016).

CONCLUSIONS
As of 2018, approximately 14% of the Amazon forest 
had been deforested, mainly due to the replacement of 
forests by pastures. Forest loss affects local temperature and 
precipitation, with increases in land surface temperatures and 
reductions in precipitation of up to 1.8% across the Amazon. 
Local extinctions are also a direct result of deforestation. The 
fact that there is no official record of a regional or global 
species extinction in the Amazon should bring no comfort, 
as a vast number of species remain to be described by science; 
it is possible, and even likely, that species are disappearing 
before they become known. Forest fires, selective logging, edge 
effects, and hunting put additional pressure on biodiversity, 
contributing to severe compositional shifts in remaining 
forests. The interactions between the multiple drivers of 
deforestation and forest degradation amplify their individual 
effects. An immediate halt to the drivers of deforestation and 
forest degradation is necessary to avoid further greenhouse gas 
emissions and biodiversity loss.
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RECOMMENDATIONS
• Governments, the private sector, and civil society need 

to take urgent action to avoid further deforestation in 
the Amazon, particularly of primary forests. Avoiding 
loss of primary forest is by far the highest priority to 
avoid carbon emissions, biodiversity loss, and regional 
hydrological changes.

• Governments must enforce existing laws and control land 
speculation in the region.

• Governments must close down markets for illegal 
products (e.g., timber, gold, and bush meat).

• Implement an integrated monitoring system for 
deforestation and forest degradation across the basin 
with comparable, transparent, and accessible datasets. 
Datasets can be generated through partnerships between 
governments and the scientific community. It is no longer 
acceptable for deforestation to be the sole focus of forest 
monitoring. 

• Develop basin-wide environmental impact assessments 
for infrastructure, such as roads, waterways, and dams, as 
their impacts are not only local. Planning must account 
for the indirect impacts of infrastructure on surrounding 
ecosystems, as these can outweigh direct impacts. 

• Licensing, concessions and permits for land-use activity 
and infrastructure development must be accessible across 
the Amazon Basin to support integration with ground 
and satellite-based monitoring systems, enabling supply-
chain traceability and risk assessment of investments.

• Urbanization needs planning to replace the current, 
organic encroachment mode.

• Develop large-scale emergency mechanisms, a fire-risk 
monitoring system, and an early warning system to 
prevent and combat forest fires, especially in years of 
extreme drought when fires are more likely to escape 
from non-forest land uses. These should be accompanied 
by programs stimulating alternative land-management 
techniques that do not use fire.
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Appendix S2. Fine-scale endemism in Amazonian 
birds reveals threats of deforestation
Amazonian biodiversity is non-randomly distributed across 
the basin, with geographic discontinuities like large, wide 
rivers acting alongside topo-edaphic heterogeneity, climatic 
variation, and biological interactions to delimit species ranges. 
Many vertebrates have long been recognized as being restricted 
to Amazonian ‘areas of endemism’ delimited by major rivers, 
with different ‘replacement species’ present on either side of 
these fluvial barriers. These areas of endemism are often viewed 
as planning units for conservation, including protected area 
designation (da Silva et al. 2005). Understanding patterns of 
endemism is, however, dependent on both the completeness 
of biodiversity inventories and the refinement of the taxonomy 
of different groups. For example, there has been a revolution 
in avian taxonomy driven by the use of molecular toolkits 
coupled with vocal characteristics, and new data have revealed 
previously unrecognized fine-scale cryptic diversity. This 
points towards a mismeasure of Amazonian avian diversity 
because of a reliance on morphological characteristics to define 
species, which, for example, may be highly conserved in some 
lineages of rainforest birds (Fernandes 2013; Pulido-Santacruz 
et al. 2018). For example, molecular data (Tobias et al. 2008) 
led to the description of a new bird species, Hypocnemis 
rondoni, with a tiny range in the Aripuanã-Machado interfluve 
within the Rondônia area of endemism (Whitney et al. 2007). 
These discoveries and taxonomic rearrangements mean that 
various species in this complex have restricted ranges that 
overlap the ‘arc of deforestation’ and are thus threatened 
with global extinction (e.g., Hypocnemis ochrogyna). Such 
fine-scale endemism is likely to be a common Amazonian 
biogeographic feature.

Appendix S3. Fires, deforestation, and drought lead 
to forest degradation
Fire is an intrinsic part of the deforestation process in the 
Amazon (Barlow et al. 2020). First the land is cleared, and trees 
can be felled using a variety of methods, from chainsaws to 
bulldozers. The felled vegetation is then left to dry for a period 
of a few weeks to a few months in the dry season. When the 
felled vegetation is dry, it is set on fire, transforming part of the 
biomass to ash. The land is then ready to be planted. Fires are 
also used in slash-and-burn agriculture in which Indigenous 
peoples and small landholders burn a small patch of recently 
deforested land. After a few years of agricultural use this area 
will be left as fallow while the farmer rotates agricultural 
production to another fallow. Finally, fires are also used as a 
common management tool in pastures to remove weeds and 
small trees and increase productivity. However, fires from 

Appendix S1. Why current tallies of threatened 
species in the Amazon are gross underestimates
To understand how many Amazonian species are threatened 
we first need to know how many species there are in the 
basin. It is estimated that 86% of existing species on Earth 
and 91% of species in the ocean still await formal scientific 
description; just 1.7 million species have been cataloged 
to date (Mora et al. 2011). The bulk of this undiscovered 
diversity is expected to be found in tropical forests like the 
Amazon. Undertaking the first step and putting names to 
life on Earth is the greatest impediment to understanding 
how much of that life is threatened with extinction. Global 
estimates of over one million threatened species (e.g., IPBES 
2019) are derived from estimates of the total number of species 
that may exist combined with ratios of how many described 
species are threatened. For example, around 10% of described 
insects are known to be threatened with extinction. 

The number of species officially listed as threatened in the 
Amazon is low for a variety of reasons. Firstly, we are unlikely 
to have described more than 10% of all the species in the basin. 
Secondly, even for those species that have been named, the Red 
Listing process disproportionately covers vertebrate species and 
not other species on the evolutionary tree of life. Even many 
vertebrate species that have been officially assessed have been 
classified as ‘Data Deficient,’ meaning there is insufficient 
information available to apply the criteria and evaluate their 
conservation status. The vast majority of described species have 
not been assessed, either because of a lack of information about 
their geographic distribution, responses to global change, or 
population trends, compounded by a lack of human resources 
to carry out the task of assessment and verification (IPBES 
2019). Thirdly, taxonomy is an iterative process, and genetic 
data increasingly point towards a mismeasure of Amazonian 
taxonomic diversity by uncovering multiple lineages within 
described species that have not shared genes for very long 
period of time (as much as millions of years) and that might 
be better treated at the species level. This taxonomic inflation 
(Isaac et al. 2004) tends to produce more ‘new’ restricted range 
species, which are thus more likely to meet Red List criteria if 
their ranges have suffered intensive habitat loss. 

The current low level of ‘officially’ threatened species is 
thus primarily a product of a dearth of knowledge about how 
many species inhabit the basin and what proportion of this 
’unknown’ biodiversity is therefore threatened. Secondarily, 
it also reflects shortcomings in our knowledge of the response 
of ‘known’ species to habitat loss, fragmentation, and 
disturbance, and how their geographical ranges overlap with 
regions exposed to stressors. In summary, we currently do 
not yet know how many Amazonian species are threatened.
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deforestation, subsistence agriculture, or pastures can escape 
into surrounding agricultural areas, leading to economic losses 
when crops, fences, and buildings are burned (Cammelli et al. 
2019). They can also escape to surrounding forests if it is a dry 
year, as leaf litter with <23% moisture can sustain a fire (Ray et 
al. 2005). Fires in Amazonian forests, or understory fires, tend 
to be of low intensity, with flame heights ranging from 10 to 
50 cm, and slow moving, burning 300 m per day (Cochrane et 
al. 1999; Ray et al. 2005). Understory fires can be blocked by 
the canopy and are hard to detect by remote sensing (Pessôa et 
al. 2020). However, recent technological developments, such 
as the Visible Infrared Imaging Radiometer Suite (VIIRS) and 
the Continuous Degradation Detection (CODED) have been 
fundamental in mapping understory fires across the Amazon, 
thus helping to reveal the true extent of fires and degradation 
(Schroeder et al. 2014; Oliva and Schroeder 2015; Bullock et 
al. 2020a,b; Dutra et al. 2023). 

Appendix S4. Wildfire impacts on floodplain forests
Although Amazonian floodplain forests are inundated for 
several months every year, they are remarkably flammable 
when compared to upland forests, particularly in black-water 
rivers (Flores et al. 2014, 2017; Resende et al. 2014; Nogueira 
et al. 2019). Because of flooding, the forest litter takes longer 
to decompose and accumulates, forming a root mat (fine roots 
and humus) on the topsoil that can spread smoldering fires 

during extreme drought events (dos Santos and Nelson 2013, 
Flores et al. 2014). Compared to uplands, the understory of 
floodplain forests is also slightly more open, allowing fuel to 
dry faster (Almeida et al. 2016). As a result, when wildfires 
spread, they can be intense, killing up to 90% of all trees by 
damaging their root systems (Flores et al. 2014; Resende et 
al. 2014). After a single fire, forests can still recover slowly, 
but remain vulnerable to recurrent fires for decades. Along 
the middle Rio Negro, for instance, half of all burned forests 
were affected by another fire, which caused them to become 
trapped in an open vegetation state (Flores et al. 2016). Recent 
evidence reveals that after a first fire, the topsoil of floodplain 
forests begins to lose nutrients and fine sediments and gain 
sand. At the same time, tree composition shifts, with species 
typical of white-sand savannas becoming dominant, together 
with native herbaceous plants. In only 40 years, forests on 
clay soil are replaced by white-sand savannas due to repeated 
wildfires (Flores et al. 2021). Floodplain forests are therefore 
fragile and flammable ecosystems, and because they are 
widespread throughout the Amazon, they may potentially 
spread fires across remote regions (Flores et al. 2017), an effect 
that could accelerate crossing large-scale tipping points. Plans 
to manage fire in the Amazon must take into account the 
existence of these flammable floodplain ecosystems to prevent 
fires from spreading when the next major drought occurs.
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